

The Accuracy Controlled Enterprise

Successful Defect Prevention, Failure Elimination and Error Prevention

An 'accuracy-controlled enterprise' uses targets, tolerances and tests to deliver fully complying products and services right the first time.

MikeSondalini

Contents

Contents		2
Introduction		3
1. Failure Pro	evention and Defect Elimination	5
1.1. Defec	t and Failure Creation	5
1.2. De	efect and Failure Management	.6
1.3. De	efect and Failure Elimination	.7
2. Controll	ing Accuracy – Removing Error	9
2.1. Ac	curacy Control – The Purpose of Targets in Operating Procedures	.9
2.1.1.	The Need for Tolerances in Procedures1	1
3. The Acc	curacy Controlled Enterprise (ACE) 1	3
3.1. De	veloping ACE Procedures14	1
3.1.1.	Easily Definable Standards and Measures1	4
3.1.2.	Difficult to Define Standards and Measures1	5
3.1.3.	Handling Procedural Non-Conformances1	6
3.2. Ext	ra Benefits of Being an ACE10	5
3.2.1.	Far Fewer Downstream Problems 1	6
3.2.2.	Less Expensive to the Operation 1	7
3.2.3.	Better, Faster Training In-built 1	7
3.2.4.	Less Highly Skilled Employees Needed for Less Cost 1	8
4. Raising	Standards - Intentionally Improving Skills1	9
4.1. Sys	stematize the Learning Process	0
4.1.1.	Develop Training Plans for Each Person2	0
4.2. The	e Importance of Raising Standards 2	1
4.2.1.	The Cost of Poorly Written Standard Operating Procedures2	21
4.2.2.	The Best SOPs Can Be Done By The Least Skilled People	22
4.2.3.	Train and Retrain Your People to Your Standard Operating Procedures	
4.2.4.	Focus becomes Improving the System Performance	24
5. The Pov	ver of Visual Control Measures 2	6
5.1. Vis	ual Control Measures for Continuous Processes2	7
APPENDIX.		

Understanding Elite Performers in Population Distributions	
The Curse of Being an Average Business	
Getting More Than Average Performance	
Why Teams Outperform	
Implications for Managing Organizations	

Introduction

How many defects, errors and failures can your operation afford each day? Do your people have the time to go back and do a job twice or three times because it was done wrong the first time? Are people happy to regularly accept wasted production and lost time due to mistakes? If not, then do your internal work procedures support doing the job right the first time?

The elimination of error is a major issue in business operation. Errors produce bad, unwanted outcomes. They are wasteful. They take resources and money away from where they were intended to be used. They use valuable time to correct what should have been done right in the first place. Error prevention needs to be actively addressed. Your business systems need to prevent errors happening, and if they do happen, to then detect and stop them from going further.

You can guarantee correct performance by specifying a target and tolerance in your operating procedures. Having a target and tolerance sets the recognized acceptance criterion. A simple proof-test will confirm if it has been met. Specifying a mark and tolerance range changes the focus from one of simply doing the job; to now doing the job accurately. This results in high quality workmanship and sound operating practices that deliver reliable performance. Those organizations that use 'target - tolerance - test' methodology in their procedural tasks move from being a quality-conscious operation to being an Accuracy Controlled Enterprise (ACE).

This book presents you with information on how to use one of the best methods yet devised to detect and stop errors in business processes – the Accuracy Controlled Enterprise. ACEs prevent failures and eliminate defects by doing work accurately so that the business can produce maximum profits from the effort and money that go into it.

The Accuracy Controlled Enterprise uses business procedures that ask for proof of accuracy before a task is considered to be completed properly. These built-in self-checks prove all is well and the work was done right. It turns people into experts at their tasks who do their work right first time, every time!

It is much more than a new quality control method. Those organizations that become Accuracy Controlled Enterprises go beyond quality control. They purposely introduce into their procedures defect eliminating and failure preventing methods so they can be certain that their products or services are made without error. They are able to guarantee both internal and external customer satisfaction.

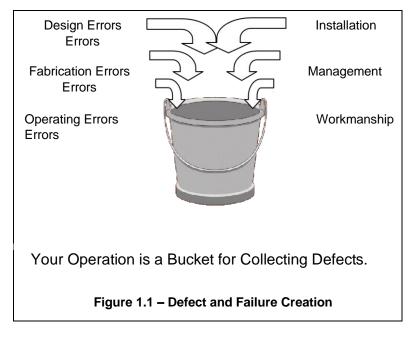
The Accuracy Controlled Enterprise does not focus on quality. Rather it focuses on accuracy of performing a task. Accuracy is defined as "the degree of conformity of a measured or calculated value to its actual or specified value." To have accuracy you need a target value and a tolerance of what is acceptably close to the target to be called accurate. ACEs understand that if the task is done right, to the required tolerance standard, then the quality is automatically delivered. A secondary benefit, and one that is most profitable, is that if the task is done accurately the first time it is also the least cost way of making the product or service using current methods.

It is easy to become an ACE. In many cases the procedural documents businesses have already prepared simply need targets, tolerances and proof-tests included. A successful proof-test result demonstrates beyond doubt that the task was done right. It gives people confidence that what they did was correct.

An 'Accuracy Controlled Enterprise' delivers fully complying product, at the least possible cost of manufacture, guaranteeing customer satisfaction right first time. Isn't that what successful business is all about?

Continued at The Accuracy Controlled Enterprise

1. Failure Prevention and Defect Elimination


An organization conducting business aims to deliver its products or services to clients exactly as it specifies them to be. The organization has procedures and standards describing its products, their manufacture and how they will perform for customers. Problems arise when it cannot meet its aims exactly as intended. If a problem prevents the business delivering what the client wants, then it jeopardizes its future. Typically, problems are defects and failures in the operation that cause non-conformances to standard requirements.

Examples are variations in raw material quality, production planning errors, equipment failures, incorrect documentation, procedures not followed, and numerous other situations that produce non-conformances.

Let's start by getting an understanding of where problems can come from.

1. 1.Defect and Failure Creation

Figure 1.1 shows how errors arise in an organization. The symbolic bucket is a department within the organization. The errors result from defective practices and wrong decisions that then grow into problems. A similar picture applies to every department – production, maintenance, administration, finance, marketing, research, and development. The same can be said for every organization in the world.

The previous pages where just a sample of ... Accuracy Controlled Enterprise

By Mike Sondalini

To download the entire ebook, please visit <u>https://bin95.com/ebooks/writing-sops.htm</u>

Other related titles by Mike Sondalini

True Downtime Cost Analysis - 2nd Edition By Don Fitchett and Mike Sondalini

See https://bin95.com/ebooks/equipment-down-time-costs.htm

Defect and Failure True Cost By Mike Sondalini

See https://bin95.com/ebooks/risk-based-decision-making.htm

For many more titles by Mike Sondalini, please see ... <u>https://bin95.com/ebooks/</u>

(Feed Forward Publications provides Industrial related eBooks and Software.)