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ABSTRACT 
 
The manner in which a measured process variable responds over time to changes in the controller output 
signal is fundamental to the design and tuning of a PID controller. The best way to learn about the 
dynamic behavior of a process is to perform experiments, commonly referred to as “bump tests.” 
Critical to success is that the process data generated by the bump test be descriptive of actual process 
behavior. Discussed are the qualities required for “good” dynamic data and methods for modeling the 
dynamic data for controller design. Parameters from the dynamic model are not only used in correlations 
to compute tuning values, but also provide insight into controller design parameters such as loop sample 
time and whether dead time presents a performance challenge. It is becoming increasingly common for 
dynamic studies to be performed with the controller in automatic (closed loop). For closed loop studies, 
the dynamic data is generated by bumping the set point. The method for using closed loop data is 
illustrated. Concepts in this work are illustrated using a level control simulation. 
 

FORM OF THE CONTROLLER 
 
The methods discussed here apply to the complete family of PID algorithms. Examples presented will 
explore the most popular controller of the PID family, the Proportional-Integral (PI) controller: 
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In this controller, u(t) is the controller output and ubias is the controller bias. The tuning parameters are 
controller gain, KC, and reset time, τI. Because τI  is in the denominator, smaller values of reset time 
provide a larger weight to (increase the influence of) the integral term. 
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CONTROLLER DESIGN PROCEDURE 
 
Designing any controller from the family of PID algorithms entails the following steps:  

 specifying the design level of operation,  
 collecting dynamic process data as near as practical to this design level,  
 fitting a first order plus dead time (FOPDT) model to the process data, and  
 using the resulting model parameters in a correlation to obtain initial controller tuning values.  

 
The form of the FOPDT dynamic model is: 
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where y(t) is the measured process variable and u(t) is the controller output signal. When Eq. 2 is fit to 
the test data, the all-important parameters that describe the dynamic behavior of the process result: 
 

 Steady State Process Gain, KP 
 Overall Process Time Constant, τP 
 Apparent Dead Time, θP 

 
These three model parameters are important because they are used in correlations to compute initial 
tuning values for a variety of controllers [1]. The model parameters are also important because: 

 the sign of KP indicates the sense of the controller (+KP → reverse acting;   −KP  → direct acting) 
 the size of τP indicates the maximum desirable loop sample time (be sure sample time T ≤ 0.1τP) 
 the ratio θP /τP indicates whether a Smith predictor would show benefit (useful if θP > τP ) 
 the dynamic model itself can be employed within the architecture of feed forward, Smith 

predictor, decoupling and other model-based controller strategies. 
 

DEFINING GOOD PROCESS TEST DATA 
 
As discussed above, the collection and analysis of dynamic process data are critical steps in controller 
design and tuning. A “good” set of data contains controller output to measured process variable data that 
is descriptive of the dynamic character of the process. To obtain such a data set, the answer to all of 
these questions about your data should be "yes" [1]. Ultimately, it is your responsibility to consider these 
steps to ensure success. 
 
1. Was the process at steady state before data collection started?  
 
Suppose a controller output change forces a dynamic response in a process, but the data file only shows 
the tail end of the response  without  showing the actual controller output change that caused the 
dynamics in the first place. Popular modeling tools will indeed fit a model to this data, but it will skew 
the fit in an attempt to account for an unseen "invisible force." This model will not be descriptive of your 
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actual process and hence of little value for control. To avoid this problem, it is important that data 
collection begin only after the process has settled out. The modeling tool can then properly account for 
all process variations when fitting the model. 
 
2. Did the test dynamics clearly dominate the process noise? 
 
When generating dynamic process data, it is important that the change in controller output cause a 
response in the process that clearly dominates the measurement noise. A rule of thumb is to define a 
noise band of ±3 standard deviations of the random error around the process variable during steady 
operation. Then, when during data collection, the change in controller output should force the process 
variable to move at least ten times this noise band (the signal to noise ratio should be greater than ten). If 
you meet or exceed this requirement, the resulting process data set will be rich in the dynamic 
information needed for controller design. 
 
3. Were the disturbances quiet during the dynamic test? 
 
It is essential that the test data contain process variable dynamics that have been clearly (and in the ideal 
world exclusively) forced by changes in the controller output as discussed in step 2. Dynamics caused 
by unmeasured disturbances can seriously degrade the accuracy of an analysis because the modeling tool 
will model those behaviors as if they were the result of changes in the controller output signal. In fact, a 
model fit can look perfect, yet a disturbance that occurred during data collection can cause the model fit 
to be nonsense. If you suspect that a disturbance event has corrupted test data, it is conservative to rerun 
the test. 
 
4. Did the model fit appear to visually approximate the data plot? 
 
It is important that the modeling tool display a plot that shows the model fit on top of the data. If the two 
lines don't look similar, then the model fit is suspect. Of course, as discussed in step 3, if the data has 
been corrupted by unmeasured disturbances, the model fit can look great yet the usefulness of the 
analysis can be compromised. 
 

NOISE BAND AND SIGNAL TO NOISE RATIO 
 
When generating dynamic process data, it is important that the change in the controller output signal 
causes a response in the measured process variable that clearly dominates the measurement noise. One 
way to quantify the amount of noise in the measured process variable is with a noise band.  
 
As illustrated in Fig. 1, a noise band is based on the standard deviation of the random error in the 
measurement signal when the controller output is constant and the process is at steady state. Here the 
noise band is defined as ±3 standard deviations of the measurement noise around the steady state of the 
measured process variable (99.7% of the signal trace is contained within the noise band). While other 



 

 
innovative solutions from the process control professionals 

definitions of the noise band have been proposed, this definition is conservative when used for controller 
design.  
 
When generating dynamic process data, the change in controller output should cause the measured 
process variable to move at least ten times the size of the noise band. Expressed concisely, the signal to 
noise ratio should be greater than ten. In Fig. 1, the noise band is 0.25°C. Hence, the controller output 
should be moved far and fast enough during a test to cause the measured exit temperature to move at 
least 2.5°C. This is a minimum specification. In practice it is conservative to exceed this value. 
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Figure 1 - Noise Band Encompasses ± 3 Standard Deviations Of The Measurement Noise 

 
CONTROLLER TUNING FROM CORRELATIONS 
 
The recommended tuning correlations for controllers from the PID family are the Internal Model Control 
(IMC) relations [1]. These are an extension of the popular lambda tuning correlations and include the added 
sophistication of directly accounting for dead time in the tuning computations. 
 
The first step in using the IMC (lambda) tuning correlations is to compute, τC, the closed loop time 
constant. All time constants describe the speed or quickness of a response. The closed loop time constant 
describes the desired speed or quickness of a controller in responding to a set point change. Hence, a small 
τC (a short response time) implies an aggressive or quickly responding controller. The closed loop time 
constants are computed as: 
 
 Aggressive Tuning:   Cτ   is the larger of    0.1 Pτ   or   0.8 Pθ                  
 Moderate Tuning:     Cτ   is the larger of    1.0 Pτ   or   8.0 Pθ                              
 Conservative Tuning:  Cτ   is the larger of    10 Pτ   or   80.0 Pθ     
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With τC computed, the PI correlations for IMC tuning are: 
 

                KC  = 
)( CP

p

PK
1

τθ
τ
+

    τI  = Pτ                                                      (3) 

 
 

Final tuning is verified on-line and may require tweaking. If the process is responding sluggishly to 
disturbances and changes in the set point, the controller gain is too small and/or the reset time is too large. 
Conversely, if the process is responding quickly and is oscillating to a degree that makes you 
uncomfortable, the controller gain is too large and/or the reset time is too small.  

EXAMPLE: SET POINT TRACKING IN GRAVITY DRAINED TANKS 
 
The gravity drained tanks process, shown in Fig. 2, is two non-interacting tanks stacked one above the 
other. Liquid drains freely through a hole in the bottom of each tank. As shown, the measured process 
variable is liquid level in the lower tank. To maintain level, the controller manipulates the flow rate of liquid 
entering the top tank. The disturbance variable is a secondary flow out of the lower tank from a positive 
displacement pump. Thus, the disturbance flow is independent of liquid level. 
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Figure 2 - Gravity Drained Tanks Process 
 
The design level of operation for this study is a measured level in the lower tank of 2.4 m while the pumped 
flow disturbance is at its expected value of 2.0 L/min. The control objective is to track set point steps in the 
range of 2.0 to 2.8 m. The process is currently under P-Only control and operations personnel will not open 
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the loop for controller design experiments. Hence, closed loop set point steps are used to generate dynamic 
process data. 
 
As shown in Fig. 3, the P-Only controller being used has a KC = 40 %/m and a bias value of 55.2% 
(determined as the value of the controller output that, in open loop, causes the measured level in the 
lower tank to steady at the design value of 2.4 m when the pumped flow disturbance is at its expected 
value of 2.0 L/min). With data being saved to file, the dynamic testing experiment begins. Specifically, 
the set point is stepped up to 2.8 m, then down to 2.0 m, and finally back to the design level of 2.4 m (set 
point sequences of other sizes and durations would be equally reasonable).  
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Figure 3 – Set point step tests on gravity drained tanks under P-Only control 
 
Visual inspection of Fig. 3 confirms that the closed loop dynamic event is set point driven (as opposed 
to disturbance driven). Also, control action appears energetic enough such that the response of the 
measured process variable clearly dominates the noise.   
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Figure 4 – FOPDT fit of closed loop dynamic data generated in Fig.8.5 
 
The dynamic data of Fig. 3 is fit with a FOPDT model using Loop-Pro software by Control Station. A 
plot of the model and closed loop process data is shown in Fig. 4. The model appears to be reasonable 
and appropriate based on visual inspection, thus providing the design parameters: 
 
          Process Gain, KP = 0.094 m/% 
          Time Constant, τP   = 1.6 min 
                Dead Time, θP = 0.56 min 
 
We first compute the closed loop time constant. Here we choose aggressive tuning, which is computed 
as:  
                 τC = larger of 0.1τP or 0.8θP = larger of 0.1(1.6) or 0.8(0.56) = 0.45 min.  
 
Substituting this closed loop time constant and the above FOPDT model parameters into the IMC tuning 
correlations of Eq. 3 yields the following tuning values: 
 
 

                            KC  = ⎟
⎠
⎞

⎜
⎝
⎛

+ 45.056.0
6.1

094.0
1   =  16.9 %/min               τI  = 1.6 min 

 
A reverse acting controller is required because KC is positive. Because the PI controller has integral 
action, the bias value is not entered but is automatically initialized by our instrumentation to the current 
value of the controller output at the moment the loop is closed. 
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Figure 5 – Performance of PI controller in tracking set point steps 

 
The performance of this controller in tracking set point changes is pictured in Fig. 5. Although good or 
best performance is decided based on the capabilities of the process, the goals of production, the impact 
on downstream units and the desires of management, Fig. 5 exhibits generally desirable performance. 
That is, the process responds quickly, shows modest overshoot, settles quickly, and displays no offset. 
Compare this to Fig. 3, that shows P-Only performance for the same control challenge. 

 INTERACTION OF PI TUNING PARAMETERS 
 
One challenge of the PI controller is that there are two tuning parameters to adjust and difficulties can arise 
because these parameters interact with each other. Figure 6 shows a tuning map that illustrates how a 
typical set point response might vary as the two tuning parameters are changed.  
 
The center of Fig. 6 shows a set point step response that is labeled as the base case performance. It is 
important to recognize that this base case plot will not be considered by some to be the "best" performance. 
What is best must be determined by the operator or engineer for each implementation. Some require no 
overshoot while others will tolerate some overshoot in exchange for a faster set point response. In any 
event, the grid shows how a set point step response changes as the two tuning parameters are doubled and 
halved from a base (here defined as desired) tuning. 
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PI Controller Tuning Map 
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Figure 6 - How PI controller tuning parameters impact set point tracking performance 
 
The plot in the upper left of the grid shows that when gain is doubled and reset time is halved, the controller 
produces large, slowly damping oscillations. Conversely, the plot in the lower right of the grid shows that 
when controller gain is halved and reset time is doubled, the response becomes sluggish. This chart is called 
a tuning map because, in general, if a controller is behaving poorly, you can match the performance you 
observe with the closest picture in Fig. 6 and obtain guidance as to the appropriate tuning adjustments 
required to move toward your desired performance. 

 
CONCLUSIONS 
 
Understanding the dynamic behavior of a process is essential to the proper design and tuning of a PID 
controller. The recommended design and tuning methodology is to: 

 step, pulse or otherwise perturb the controller output near the design level of operation, 
 record the controller output and measured process variable data as the process responds, and 
 fit a first order plus dead time (FOPDT) dynamic model to this process data,   
 use the dynamic model parameters in a correlation to compute P-Only, PI, PID and PID with Filter 
 controller tuning values, 
 test your controller to ensure satisfactory performance. 
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